€

omplete
ence

R
K

e

Bl
e ‘
Sl L
(l e
W e
2 A
o
G A o
il %s\,gqqﬁ i

o
H it
st

,

LR i .

P
s

L
L
e

e
el
il e i
i
L i
e : ‘5%5"’;ii’ém‘
HRE Mww{
§ R
G .
i -

.‘ i
;fmi%w

460

C++: The Complete Reference

Although not part of the original specification for C++, it was added several
years ago and is supported by all modern C++ compilers. Using templates, it
is possible to create generic functions and classes. In a generic function or class, the
type of data upon which *he function or class operates is specified as a parameter.
Thus, you can use one function or class with several different types of data without
having to explicitly recode specific versions for each data type. Both generic functions
and generic classes are discussed in this chapter.

The template is one of C++'s most sophisticated and high-powered features.

Generic Functions

A generic function defines a general set of operations that will be applied to various types
of data. The type of data that the function will operate upon is passed to it as a parameter.
Through a generic function, a single general procedure can be applied to a wide range of
data. As you probably know, many algorithms are logically the same no matter what
type of data is being operated upon. For example, the Quicksort sorting algorithm is the
same whether it is applied to an array of integers or an array of floats. It is just that the
type of the data being sorted is different. By creating a generic function, you can define
the nature of the algorithm, independent of any data. Once you have done this, the
compiler will automatically generate the correct code for the type of data that is actually
used when you execute the function. In essence, when you create a generic function you
are creating a function that can automatically overload itself.

A generic function is created using the keyword template. The normal meaning of
the word "template” accurately reflects its use in C++. It is used to create a template (or
framework) that describes what a function wiil do, leaving it to the compiler to fill in
the details as needed. The general form of a template function definition is shown here:

template <class Ttype> ret-type func-name(parameter list)

{
}

Here, Ttype is a placeholder name for a data type used by the function. This name

may be used within the function definition. However, it is only a placeholder that the
compiler will automatically replace with an actual data type when it creates a specific
version of the function. Although the use of the keyword class to specify a generic type
in a template declaration is traditional, you may also use the keyword typename.

The following example creates a generic function that swaps the values of the two
variables with which it is called. Because the general process of exchanging two values
is independent of the type of the variables, it is a good candidate for being made into a
generic function.

/ / body of function

Chapter 18:
// Function template example.
#include <iostream>
using namespace std;
// This is a function template.
template <class X> void swapargs (X &a, X &b)
{
X temp;
temp = a;
a = b;
b = temp;
}
int main{)
{
int i=1%, 3=20;
double x=10.1, y=23.3;
char a='x"', b='z";
cout << "Original i, J: " << 1 << ' ' << j << ‘An';
cout << "Original x, y: " << x << ' ' <<y << ‘\n’;
cout << "Original a, b: " << a << ' ' << b << '\n';
swapargs (i, j); // swap integers
swapargs (x, y); // swap floats
swapargs (a, b); // swap chars
cout << "Swapped i, j: " << 1 << ' 7 << j << '\n';
cout << "Swapped x, y: " << x << ' ' <<y << ‘\n';
cout << "Swapped a, b: " << a << ' ' << b << '"\n';

return 0;

Let's look closely at this program. The line:

template <class ¥> void swapargs (X &a, X &b)

Templates

tells the compiler two things: that a template is being created and that a generic
definition is beginning. Here, X is a generic type thatis used as a placeholder. After the
template portion, the function swapargs() is declared, using X as the data type of the
values that will be swapped. In main(), the swapargst() function is called using three

461

462

Lo

C++: The Complete Reference

different types of data: ints, doubles, and chars. Because swapargs() is a generic
function, the compiler automatically creates three versions of swapargs(): one that
will exchange integer values, one that will exchange floating-point values, and one
that will swap characters.

Here are some important terms related to templates. First, a generic function (that is,
a function definition preceded by a template statement) is also called a template function.
Both terms will be used interchangeably in this book. When the compiler creates a specific
version of this function, it is said to have created a specialization. This is also called a
generated function. The act of generating a function is referred to as instantinting it. Put
differently, a generated function is a specific instance of a template function.

Since C++ does not recognize end-of-line as a statement terminator, the template
clause of a generic function definition does not have to be on the same line as the
function’s name. The following example shows another common way to format the
swapargs() function.

template <class X>
void swapargs (X &a, X &b)
{

X temp;

temp = a;
a = b;
b = temp;

If you use this form, it is important to understand that no other statements can occur
between the template statement and the start of the generic function definition. For
example, the fragment shown next will not compile.

// This will not compile.
template <class X>
int i; // this is an error
void swapargs (X &a, 3 &b)
{

X temp;

As the comments imply, the template specification must directly precede the
function definition.

Chapter 18: Templates

A Function with Two Generic Types

You can define more than one generic data type in the template statement by using a
comma-separated list. For example, this program creates a template function that has
two generic types.

#include <iostream>

using namespace std;

template <class typel, class type2>
void myfunci{typel x, typeZ v)
{

cout << x << ' ' << y << 'A\n';

int main{()

A

{
myfunc (10, "I like C++"};

myfunc(98.6, 19L);

return 0;

In this example, the placeholder types typel and type2 are replaced by the
compiler with the data types int and char *, and double and long, respectively,
when the compiler generates the specific instances of myfunc() within main().

When vou create a template function, you are, in essence, allowing the com iler to
Remember y plate f -’ 8 P

qenerate as many different versions of that function as are necessary for handling
the various ways that your program calls the function.

Explicitly Overloading a Generic Function

Even though a generic function overloads itself as needed, you can explicitly overload
one, too. This is formally called explicit specialization. If you overload a generic function,
that overloaded function overrides (or "hides") the generic furction relative to that
specific version. For example, consider the following revised version of the argument-
swapping example shown earlier.

// Overriding a template function.
#include <iostream>
using namespace std;

463

464 C++: The Complete Reference

template <class X> void swapargs(X &a, X &b)
{
X temp;

temp = a;

a = b;

b = temp;

cout << "Inside template swapargs.\n";

// This overrides the generic version of swapargs () for ints.
void swapargs (int &a, int &b)
{

int temp;

b = temp;
cout << "Inside swapargs int specialization.\n";

int main()
{
int i=10, §=20;
double x=10.1, y=23.3;

char a='x', b='z"';

cout << "Original i, j: " << i << ' ' << j << '\n';

cout << "Original x, y: " << x << ' ' << y << ‘\n‘';

cout << "Original a, b: " << a << ' ' << b << '‘\n';
swapargs (i, j); // calls explicitly overloaded swapargs ()

swapargs (x, y); // calls generic swapargs ()
swapargs(a, b); // calls generic swapargs ()

cout << "Swapped 1, j: " << i << ' ' << j << '\n';
cout << "Swapped X, y: " << x << ' ' << y << '\n';
cout << "Swapped a, b: " << a << ' ' << b << '\n';

return 0;

Chapter 18: Templates 465

This program displays the following output.

Original Z, j: 10 20

Original x, y: 10.1 23.3

Original a, b: x z

Inside swapargs int specialization.
Inside template swapargs.

Inside template swapargs.

Swapped i, j: 20 10

Swapped x, y: 23.32 10.1

Swapped a, b: z x

As the comments inside the program indicate, when swapargs(i, j) is called, it
invokes the explicitly overloaded version of swapargs() defined in the program. Thus,
the compiler does not generate this version of the generic swapargs() function, because
the generic function is overridden by the explicit overloading.

Recently, a new-style syntax was introduced to denote the explicit specialization
of a function. This new method uses the template keyword. For example, using the
new-style specialization syntax, the overloaded swapargs() function from the
preceding program looks like this.

// Use new-style specialization syntax.
template<> void swapargs<int>(int &a, int &b)
{

int temg;

temp = a;
a = b;
b = temp;

cout << "Inside swapargs int specialization.\n";
i

As you can see, the new-style syntax uses the template<> construct to indicate
specialization. The type of data for which the specialization is being created is placed
inside the angle brackets following the function name. This same syntax is used
to specialize any type of generic function. While there is no advantage to using one
specialization syntax over the other at this time, the new-style is probably a better
approach for the long term.

Explicit specialization of a template allows you to tailor a version of a generic
function to accommodate a unique situation—perhaps to take advantage of some
performance boost that applies to only one type of data, for example. However, as
a general rule, if you need to have different versions of a function for different data
types, you should use overloaded functions rather than templates.

466 C++: The Complete Reference

Overloading a Function Template

In addition to creating explicit, overloaded versions of a generic function, you can also
overload the template specification itself. To do so, simply create another version of the
template that differs from any others in its parameter list. For example:

// Overload a function template declaration.
#include <iostream>
using namespace std;

// First version of f() template.
template <class X> void £(X a)
{

cout << "Inside f£(X a)\n";

// Second version of f() template.
template <class X, class Y> void f{X a, Y b)

{
cout << "Inside f(X a, Y b)\n";

int main()

f£(10); // calls f(X)
£(10, 20); // calls f£(X, Y)

Here, the template for f() is overloaded to accept either one or two parameters.

Using Standard Parameters with Template Functions

You can mix standard parameters with generic type parameters in a template function.
These nongeneric parameters work just like they do with any other function. For
example:

// Using standard parameters in a template function.
#include <iostream>
using namespace std;

Chapter 18: Templates

const int TABWIDTH = 8;

// Display data at specified tab position.
template<class X> void tabOut (X data, int tab)
{
for(; tab; tab--)
for(int i=0; 1<TABWIDTH; i++) cout << ' ';

i

cout << data << "\n";

int main()
{
tabOut ("This is a test", 0);
tabOut (100, 1);
tabOut ("X, 2);
tabOut (10/3, 3);

return 0;

This is a test
160

In the program, the function tabOut() displays its first argument at the tab position
requested by its second argument. Since the first argument is a generic type, tabOut()
can be used to display any type of data. The tab parameter is a standard, call-by-value
parameter. The mixing of generic and nongeneric parameters causes no trouble and is,
indeed, both common and useful.

Generic Function Restrictions

Generic functions are similar to overloaded functions except that they are more
restrictive. When functions are overloaded, you may have different actions performed
within the body of each function. But a generic function must perform the same general
action for all versions—only the type of data can differ. Consider the overloaded

467

468 C++: The Complete Reference

functions in the following example program. These functions could rot be replaced by
a generic function because they do not do the same thing.

#include <iostream>
#include <cmath>

using namespace std;

void myfunc(int i)
{

cout << "value 1is: " << 1 << "\n";

void myfunc (double d)
{
double intpart;
double fracpart;

fracpart = modf(d, &intpart);

cout << "Fractional part: " << fracpart;
cout << "\n";

cout << "Integer part: " << intpart;

int main()

{
myfunc (1) ;
myfunc(12.2);

return 0;

___| Applying Generic Functions

Generic functions are one of C++'s most useful features. They can be applied to all
types of situations. As mentioned earlier, whenever you have a function that defines
a generalizable algorithm, you can make it into a template function. Once you have
done so, you may use it with any type of data without having to recode it. Before
moving on to generic classes, two examples of applying generic functions will be
given. They illustrate how easy it is to take advantage of this powerful C++ feature.

Chapter 18: Templates 469

A Generic Sort

Sorting is exactly the type of operation for which generic functions were designed.
Within wide latitude, a sorting algorithm is the same no matter what type of data is
being sorted. The following program illustrates this by creating a generic bubble sort.
While the bubble sort is a rather poor sorting algorithm, its operation is clear and
uncluttered and it makes an easy-to-understand example. The bubble() function
will sort any type of array. It is called with a pointer to the first element in the array
and the number of elements in the array.

// A Generic bubble sort.
#include <iostream>

using namespace std;

template <class X> void bubble(
X *items, // pointer to array to be sorted

int count) // number of items in array

register int a, b;
X t;

for(a=1; a<count; a++)
for (b=count-1; b>=a; b--)
if(items[b-1] > items[b]) {
// exchange elements
t = items[b-1];
items[b-1] = items({b];
items [b] = t;

int main()

{
int iarrayl[7] = {7, 5, 4, 3, 9, 8, 6};
double darray[5] = {4.3, 2.5, -0.9, 100.2, 3.0};

int 1i;

cout << "Here is unsorted integer array: ";
for (i=0; 1i<7; 1i++)

470 C++: The Complete Reference

cout << larray[i] << ' *;
cout << endl;
cout << "Here is unsorted double array: ";
for (i=0; 1i<5; i++)
cout << darrayl[i] << ' ';
cout << endl;

bubble(iarray, 7);
bubble (darray, 5):
cout << "Here is sorted integer array: ";
for(i=0; 1i<7; i++)

cout << iarray[i] << ' ';
cout << endl;
cout << "Here 1is sorted double array: ";
for (i=0; 1i<5; i++)

cout << darray[i] << ' ';
cout << endl;

return O;

r\ﬁsﬁ
The output produced by the program is shown here.

Here is unsorted integer array: 7 5 4 3 9

Here is unsorted double array: 4.3 2.5 -0.9 100.2 3

Here is sorted integer array: 3 6 8
.5 4

oo

4
Here is sorted double array: -0.9

As you can see, the preceding program creates two arrays: one integer and one double.
It then sorts each. Because bubble() is a template function, it is automatically over-
loaded to accommodate the two different types of data. You might want to try using
bubble() to sort other types of data, including classes that you create. In each case, the
compiler will create the right version of the function for you.

Compacting an Array

Another function that benefits from being made into a template is called compact().
This function compacts the elements in an array. It is not uncommon to want to remove
elements from the middle of an array and then move the remaining elements down so

Chapter 18: Templates 471

that all unused elements are at the end. This sort of operation is the same for all types
of arrays because it is independent of the type data actually being operated upon. The
generic compact() function shown in the following program is called with a pointer to
the first element in the array, the number of elements in the array, and the starting and
ending indexes of the elements to be removed. The function then removes those
elements and compacts the array. For the purposes of illustration, it also zeroes the
unused elements at the end of the array that have been freed by the compaction.

// A Generic array compaction function.
#include <iostream>
using namespace std;

template <class X> void compact(
X *itemg, // pointer to array to be compacted

int count, // number of items in array

int start, // starting index of compacted region
int end) // ending index of compacted region

register int 1i;

for(i=end+1; i<count; i++, start++)
items[start] = items([i];

/* For the sake of illustration, the remainder of
the array will be zerced. */
for(; start<count; start++) itemsistart] = (X) 0;

int main()

{

int nums (7] = {0, 1, 2, 3, 4, 5, 6};
char str[18] = "Generic Functions";
int i;

cout << "Here 1s uncompacted integer array: ";
for(i=0; i<7; 1i++)

cout << nums[i] << ' ';
cout << endl;

cout << "Here is uncompacted string: ";
for(i=0; 1<18; i++)

‘Wxaqzz

C++: The Complete Reference

cout << strli] << ' ';
cout << endl;

compact (nums, 7, 2, 4);
compact (str, 18, 6, 10);

cout << "Here is compacted integer array: ";
for(i=0; 1i<7; i++)

cout << nums(i] << ' ';
cout << endl;

cout << "Here is compacted string: *;
for (i=0; 1i<18; i++)
cout << str(i] << ' ';

cout << endl;

return 0;

This prograni compacts two different types of arrays. One is an integer array, and the
other is a string. However, the compact() function will work for any type of array. The
output from this program in shown here.

Here is uncompacted integer array: 0 1 2 3 4 5 6

Here is uncompacted string: Gen e r i c Functions
Here is compacted integer array: 0 1 5 6 0 0 0

Here is compacted string: Gener i ¢ t i ons

As the preceding examples illustrate, once you begin to think in terms of templates,
many uses will naturally suggest themselves. As long as the underlying logic of a
function is independent of the data, it can be made into a generic function.

Generic Classes

In addition to generic functions, you can also define a generic class. When you do this,
you create a class that defines all the algorithms used by that class; however, the actual
type of the data being manipulated will be specified as a parameter when objects of
that class are created.

Generic classes are useful when a class uses logic that can be generalized. For
example, the same algorithms that maintain a queue of integers will also work for a
queue of characters, and the same mechanism that maintains a linked list of mailing

Chapter 18: Templates 473

addresses will also maintain a linked list of auto part information. When you create a
generic class, it can perform the operation you define, such as maintaining a queue or
a linked list, for any type of data. The compiler will automatically generate the correct
type of object, based upon the type you specify when the object is created.

The general form of a generic class declaration is shown here:

template <class Ttype> class class-name {

}
Here, Ttype is the placeholder type name, which will be specified when a class is
instantiated. If necessary, you can define more than one generic data type using a
comma-separated list.

Once you have created a generic class, you create a specific instance of that class
using the following general form:

class-name <type> ob;

Here, type is the type name of the data that the class will be operating upon. Member
functions of a generic class are themselves automatically generic. You need not use
template to explicitly specify them as such.

In the following program, the stack class (first introduced in Chapter 11) is
reworked into a generic class. Thus, it can be used to store objects of any type. In this
example, a character stack and a floating-point stack are created, but any data type can
be used.

// This function demonstrates a generic stack.
#include <iostream>
using namespace std;

const int SIZE = 10;

// Create a generic stack class

template <class StackType> class stack {
StackType stck[SIZE]; // holds the stack
int tos; // index of top-of-stack

public:
stack() { tos = 0; } // initialize stack
void push(StackType ob); // push object on stack

474 C++: The Complete Reference

StackType pop(); // pop object from stack
}i

// Push an object.
template <class StackType> void stack<StackType>::push(StackType ob)

{

if (tos==SIZE) {
cout << "Stack is full.\n";
return;
}
stckltos] = ok;
tos++;
}
// Pop an object.
template <class StackType> StackType stack<StackType>::pop()
(.
if (tos==0) {
cout << "Stack is empty.\n";
return 0; // return null on empty stack
}
tos-—;
return stckltos];

int main()

{
// Demonstrate character stacks.
stack<char> sl, s2; // create two character stacks
int 1i;

sl.push('a')
s2.push('x")
sl.push('b');
s2.push('y")
sl.push('c")
s2.push('z")

for(i=0; i<3; i++) cout << "Pop sl: " << sl.pop() << "\n";
for(i=0; i<3; i++) cout << "Pop s2: " << s2.pop() << "\n";

// demonstrate double stacks
stack<double> dsl, ds2; // create two double stacks

Chapter 18: Templates

dsl.push(
ds2 .push/(
dsl.push(
ds2.push (
dsl.push(
ds2.push(

“\n" ;
"\n";

"Poo dsl: " << dsl.pop() <<

"Pop ds2:

for(i=0; 1i<3; 1i++) cout <<

for(i=0; 1i<3; i++) cout << " << dsZ.popl() <<

return 0;

As you can see, the declaration of a generic class is similar to that of a generic
function. The actual type of data stored by the stack is generic in the class declaration.
It is not until an object of the stack is declared that the actual data type is determined.
When a specific instance of stack is declared, the compiler automatically generates all
the functions and variables necessary for handling the actual data. In this example, two
different types of stacks are declared. Two are integer stacks. Two are stacks of doubles.
Pay special attention to these declarations:

// create two character stacks
ds2; - // create two double stacks

stack<char> sl, s2;
stack<double> dsl,

Notice how the desired data type is passed inside the angle brackets. By changing the
type of data specified when stack objects are created, you can change the type of data

stored in that stack. For example, by using the following declaration, you can create
another stack that stores character pointers.

! stack<char *> chrptrQ;

You can also create stacks to store data types that you create. For example, if you
want to use the following structure to store address information,

struct addr {

char
char
char
char

name [40];
street [40];
city([30];
state([3];

475

476 C++: The Complete Reference

char zip(l2];
i

then to use stack to generate a stack that will store objects of type addr, use a
declaration like this:

l stack<addr> obj;

As the stack class illustrates, generic functions and classes are powerful tools that
you can use to maximize your programming efforts, because they allow you to define
the general form of an object that can then be used with any type of data. You are saved
from the tedium of creating separate implementations for each data type with which
you want the algorithm to work. The compiler automatically creates the specific versions
of the class for you.

An Example with Two Generic Data Types

A template class can have more than one generic data type. Simply declare all the data
types required by the class in a comma-separated list within the template specification.
For example, the following short example creates a class that uses two generic data types.

/* This example uses two generic data types in a
class definition.

*/

#include <iostream>

using namespace std;

template <class Typel, class Type2> class myclass
{
Typel 1i;
Type2 j;
public:
myclass (Typel a, Type2 b) { i = a; j = b; }
void show() { cout << i << ' ' << j << '\n'; }
i

int main()
{
myclass<int, double> obl (10, 0.23);
myclass<char, char *> ob2('X', "Templates add power.");

Chapter 18: Templates 477

obl.show(); // show int, double
ob2.show(); // show char, char *

return 0;

This program produces the following output:

10 0.23
X Templates add power.

The program declares two types of objects. ob1 uses int and double data. ob2 uses
a character and a character pointer. For both cases, the compiler automatically generates
the appropriate data and functions to accommodate the way the objects are created.

Applying Template Classes: A Generic Array Class

To illustrate the practical benefits of template classes, let's look at one way in which
they are commonly applied. As you saw in Chapter 15, you can overload the []
operator. Doing so allows you to create your own array implementations, including
"safe arrays" that provide run-time boundary checking. As you know, in C++, it is
possible to overrun (or underrun) an array boundary at run time without generating
a run-time error message. However, if you create a class that contains the array, and
allow access to that array only through the overloaded [] subscripting operator, then
you can intercept an out-of-range index.

By combining operator overloading with a template class, it is possible to create a
generic safe-array type that can be used for creating safe arrays of any data type. This
type of array is shown in the following program:

// A generic safe array example.
#include <iostream>

#include <cstdlib>

using namespace std;

const int SIZE = 10;

template <class AType> class atype {
AType al[SIZE];

public:
atype () {

478 C++: The Complete Reference

register int 1i;
for(i=0; 1<SIZE; i++) ali] = i;
1

AType &operator{] (int 1i);
i

// Provide range checking for atype.
template <class AType> AType &atype<AType>::operator[] (int i)
{

if(i<0 || i> SIZE-1) {
cout << "\nIndex value of ";
cout << 1 << " is out-of-bounds.\n";
exit(l);

}

return ali];

int main{()

{
atype<int> intob; // integer array
atype<double> doubleob; // double array

int i;

cout << "Integer array: ":

for(i=0; i<SIZE; i++) intob[i] = i;

for(i=0; i<SIZE; i++) cout << intob[i] << " ";
cout << '\n';

cout << "Double array: ";

for(i=0; 1i<SIZE; i++) doubleob[i] = (double) i/3;
for (i=0; 1<SIZE; i++) cout << doubleob[i] << " ";
cout << '\n';

intob[12] = 100; // generates runtime error

return 0;

This program implements a generic safe-array type and then demonstrates its use
by creating an array of ints and an array of doubles. You should try creating other
types of arrays. As this example shows, part of the power of generic classes is that they

Chapter 18: Templates

allow you to write the code once, debug it, and then apply it to any type of data
without having to re-engineer it for each specific application.

Using Non-Type Arguments with Generic Classes

In the template specification for a generic class, you may also specify non-type
arguments. That is, in a template specification you can specify what you would
normally think of as a standard argument, such as an integer or a pointer. The syntax
to accomplish this is essentially the same as for normal function parameters: simply
include the type and name of the argument. For example, here is a better way to
implement the safe-array class presented in the preceding section. It allows you

to specify the size of the array.

// Demonstrate non-type template arguments.
#include <iostream>

#include <cstdlib>

using namespace std;

// Here, int size 1s a non-type argument.
template <class AType, int size> class atype {

AType al[sizel; // length of array is passed in size
public:
atype () |

register int 1i;
for(i=0; i<size; i++) ali]l = 1i;
}
AType &operator[] (int i);
Y

// Provide range checking for atype.
template <class AType, int size>
AType &atype<AType, size>::operator[] (int i)
{
if(i<0 |} 1> size-1) {
cout << "\nIndex value of ";
cout << 1 << " is out-of-bounds.\n";
exit(1l);
}

return afil;

int main()

{

479

480

C+4: The Complete Reference

atype<int, 10> intob; // integer array of size 10
atype<double, 15> doubleob; // double array of size 15

int 1i;

cout << "Integer array: ";

for(i=0; 1i<10; i-+) intob{i]l = 1i;

for(i=0; 1<10; i-=+) cout << intob[i] << " v
cout << 'An';

cout << "Double array: ";
for(i=0; 1i<15; i-~+) doubleob[i] = (double) 1/3;
for(i=0; 1<15; i-+) cout << doubleocb[i] << " ";

cout << '\n';
intob[12] = 100; // generates runtime error

return 0;

Look carefully at the template specification for atype. Note that size is declared as
an int. This parameter is then used within atype to declare the size of the array a. Even
though size is depicted as a "variable" in the source code, its value is known at compile
time. This allows it to be used to set the size of the array. size is also used in the bounds
checking within the operator[1() function. Within main(), notice how the integer and
floating-point arrays are created. The second parameter specifies the size of each array.

Non-type parameters are restricted to integers, pointers, or references. Other types,
such as float, are not allowed. The arguments that you pass to a non-type parameter
must consist of either an integer constant, or a pointer or reference to a global function
or object. Thus, non-type parameters should themselves be thought of as constants,
since their values cannot be changed. For example, inside operator[1(), the following
statement is not allowed.

I size = 10; // Error

Since non-type parameters are treated as constants, they can be used to set the
dimension of an array, which is a significant, practical benefit.

As the safe-array example illustrates, the use of non-type parameters greatly
expands the utility of template classes. Although the information contained in the
non-type argument must be known at compile-time, this restriction is mild compared
with the power offered by non-type parameters.

Chapter 18: Templates 481

Using Default Arguments with Template Classes

A template class can have a default argument associated with a generic type.
For example,

template <class X=int> class nyclass { //...

Here, the type int will be used if no other type is specified when an object of type
myclass is instantiated.

It is also permissible for non-type arguments to take default arguments. The default
value is used when no explicit value is specified when the class is instantiated. Default
arguments for non-type parameters are specified using the same syntax as default
arguments for function parameters.

Here is another version of the safe-array class that uses default arguments for both
the type of data and the size of the array.

// Demonstrate default template arguments.
#include <iostream>

#include <cstdlib>

using namespace std;

// Here, AType defaults to int and size defaults to 10.
template <class AType=int, int size=10> class atype {

AType alsizel]; // size of array is passed in size
public:
atype () {

register int i;
for (1=0; i<size; i++) ali] = 1i;
}
AType &operator(] (int 1);
}i

// Provide range checking for atype.
template <class AType, int size>
AType &atype<AType, size>::operator(] (int 1)
{
if(i<0 |} i> size-1) {

cout << "\nIndex value of ";

cout << 1 << " 1is out-of-bounds.\n";

exit(1l);

482

C++: The Complete Reference

return ali];

int main()

{
atype<int, 100> intarray; // integer array, size 100
atype<double> doublearray; // double array, default size
atype<> defarray; // default to int array oI size 10

int i;

cout << "int array: ";

for(i=0; i<100; i++) intarrayl[i] = 1i;

for(i=0; 1<100; i1++) cout << intarray[i] << " ";
cout << ‘\n';

cout << "double array: ";

for(i=0; i<10; i-+) doublearray[i] = (double) i/3;
for(i=0; i<10; i++) cout << doublearray([i] << " ";
cout << 'A\n';

cout << "defarray array: ";

for(i=0; 1i<10; i-++) defarray[i] = 1i;

for(i=0; 1<10; i-+) cout << defarray([i] << " ;
cout << '\n';

return 0;

Pay close attention to this line:

template <class AType=int, int size=10> class atype {
e

Here, AType defaults to type int, and size defaults to 10. As the program illustrates,
atype objects can be created three ways:

B explicitly specifying both the type and size of the array

W explicitly specifying the type, but letting the size default to 10

B letting the type default to int and the size default to 10

Chapter 18: Templates

The use of default arguments—especially default types—adds versatility to your
template classes. You can provide a default for the type of data most com monly
used while still allowing the user of your classes to specialize them as needed.

Explicit Class Specializations
As with template functions, you can create an explicit specialization of a generic class.
To do so, use the template<> construct, which works the same as it does for explicit

function specializations. For example:

// Demonstrate class specialization.
#include <iostream>
using namespace std;

template <class T> class myclass {
T x;
public:
myclass (T a) {
cout << "Inside generic myclass\n";

X = a3

T getx() { return x; }

// Explicit specialization for int.
template <> class myclass<int> {
int x;
public:
myclass(int a) {
cout << "Inside myclass<int> specialization\n";
X = a * a;
}
int getx() { return x; }

}i

int main()

{
myclass<double> d(10.1);
cout << "double: " << d.getx() << "\n\n";

myclass<int> 1(5);

483

484 C++: The Complete Reference

cout << "int: " << i.getx() << "\n";

return 0;

This program displays the following output:

Inside generic myc.ass
double: 10.1

Inside myclass<int: specialization
int: 25

In the program, pay close attention to this line:

template <> class myclass<int> {

It tells the compiler that an explicit integer specialization of myclass is being created.
This same general syntax is used for any type of class specialization.

Explicit class specialization expands the utility of generic classes because it lets you
easily handle one or two special cases while allowing all others to be automatically
processed by the compiler. Of course, if you find that you are creating too many
specializations, you are probably better off not using a template class in the first place.

___| The typename and export Keywords

Recently, two keywords were added to C++ that relate specifically to templates:
typename and export. Both play specialized roles in C++ programming. Each is
briefly examined.

The typename keyword has two uses. First, as mentioned earlier, it can be
substituted for the keyword class in a template declaration. For example, the
swapargs() template function could be specified like this:

template <typename X> void swapargs(X &a, X &b)
{
X temp;

temp = a;

Chapter 18: Templates

b = temp;

Here, typename specifies the generic type X. There is no difference between using class
and using typename in this context.

The second use of typename is to inform the compiler that a name used in a template
declaration is a tvpe name rather than an object name. For example,

typename X::Name someObject;

ensures that X::Name is treated as a type name.

The export keyword can precede a template declaration. It allows other files to use
a template declared in a different file by specifying only its declaration rather than
duplicating its entire definjtion.

The Power of Templates

Templates help you achieve one of the most elusive goals in programming: the creation
of reusable code. Through the use of template classes you can create frameworks that
can be applied over and over again to a variety of programming situations. For example,
consider the stack class. When first shown in Chapter 11, it could only be used to store
integer values. Even though the underlying algorithms could be used to store any type
of data, the hard-coding of the data type into the stack class severely limited its
application. However, by making stack into a generic class, it can create a stack for any
type of data.

Generic functions and classes provide a powerful tool that you can use to amplify
your programming efforts. Once you have written and debugged a template class,
you have a solid software component that you can use with confidence in a variety of
different situations. You are saved from the tedium of creating separate implementations
for each data type with which you want the class to work.

While it is true that the template syntax can seem a bit intimidating at first, the
rewards are well worth the time it takes to become comfortable with it. Template
functions and classes are already becoming commonplace in programming, and this
trend is expected to continue. For example, the STL (Standard Template Library)
defined by C++ is, as its name implies, built upon templates. One last point: although
templates add a layer of abstraction, they still ultimately compile down to the same,
high-performance object code that you have come to expect from C++.

485

